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Columnar phases of three-fold molecular structures

Jean-Guy Demers and Alain Caille´
Département de Physique, Universite´ de Montréal, Case Postale 6128, Succursale Centre-ville, Montre´al, Quebec, Canada H3C 3J7

~Received 24 May 2002; published 30 January 2003!

We study the occurrence of both positional and helical orders, for three-fold symmetric flat molecules in a
columnar liquid crystal phaseDhd . Working in the group-theoretical Landau’s framework, we identify a set of
three order parameters giving rise to supercells of intercalated column with helical order and opposite helici-
ties, as observed experimentally. The first-order nature of the transition is also discussed. The degrees of
freedom introduced give rise to various other phases, including a new type, having helical order but no
positional order along the columns.

DOI: 10.1103/PhysRevE.67.011707 PACS number~s!: 64.70.Md, 61.30.Cz, 61.30.Gd, 83.80.Xz
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I. INTRODUCTION

In the framework of understanding the thermodynami
properties of aggregates of disk-shaped molecules, the s
of phase transitions between columnar liquid crystal pha
@1,2# is of fundamental interest. On the other hand, as
ganic materials with unusual properties such as high ani
ropy in elasticity and electric conductivity@3#, the columnar
liquid crystals are currently seen as candidates for molec
electronic applications such as fast photoconductors, mol
lar wires and light emitting diodes@4#. While implications to
other materials will be pointed out, the present work is ju
tified primarily by the results for hexahexylthiotriphenylen
~HHTT! liquid crystal made of molecules having a rigid co
of aromatic cycles with six flexible tails of hydrocarbo
chains.

By means of high resolution x-ray diffraction on bo
powders@5# and freely suspended strands@6,7#, a number of
phases have been identified for HHTT. In addition to t
high temperature isotropic liquidI phase (T.93 °C) and the
low temperature monoclinic crystallineK phase (T
,62 °C), two intermediate phases have been observed
the temperature rangeT5@70,93# °C, the Dhd phase is
formed with a two-dimensional hexagonal ordering of dis
dered columns. In the temperature range,T5@62,70# °C, the
more intricateDho ~also calledH) phase sets in. In what ma
be called the main feature of theDho phase, HHTT mol-
ecules are ordered or quasiordered along the columns,
one out of three columns displaced along the columnar
by half the intermolecular distance, hence forming aA3
3A3 R 30° ~or honeycomb! superlattice in the hexagona
plane. This frustration-relieving intercolumn intercalatio
was recently studied in a phenomenological approach@8#.
Starting with the symmetry groupG05(R^ Z2)`D6h and
densityr0(x) of the parentDhd phase, the irreducible repre
sentation~IR! involved in the density incrementdr(x), ap-
pearing at the transition, was identified together with ot
related phases. Only an orientationally isotropic density
crement was considered in the treatment. However, an
portant additional feature of theDho phase remains to b
considered: helical ordering of the molecular tails sets
along each column at the phase transition. Lowering the t
perature, a stiffening and extension of the six tails is o
1063-651X/2003/67~1!/011707~8!/$20.00 67 0117
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served at the approach to the transition, with formation o
propeller-type conformation, in which every second tail
bended above the molecular plane with the next one ben
below, resulting in aD3 invariant structure. After consider
ation of various structures based on a detail mapping of
molecule’s structure functions, the best-fitting model for t
Dho phase has a helical order present on each column.
jacent molecules within a stack have a relative tail rotation
nearly 45°, in line with the analysis of intermolecular pa
wise interactions and minimization of steric hindrance b
tween tails for similar derivatives@16#. The vertically dis-
placed column is found to have opposite helicity from t
other two. Recent studies@9# have focused on this orienta
tional order, assuming fixed crystalline molecular positio
Consequently, no theory has so far been proposed to acc
for the simultaneous occurrence of positional and orien
tional orders at theDhd↔Dho transition in a phenomenologi
cal, symmetry-based description, as opposed to a deta
microscopic analysis. Our objective, in the present work
to provide such a description. To account for both positio
and helical orders occurring at the same temperature, a m
mum of two IR’s are expected to be involved at the pha
transition, given the two independently measured wave v
tors appearing along the broken columnar direction in
Dho phase. Theories with more than one IR’s have been
voked in other structural phase transitions, and are gene
associated with strong coupling between the IR’s@15#. In the
present work, such coupling reflects the tail extension n
the transition, and will be shown to play an important role
well.

The paper is organized as follows. In Sec. II, we pres
the model used to study theDhd↔Dho transition, a model
involving contributions from a total of three IR’s with a fre
energy expansion developed to fourth order in the order
rameter coefficients. In Sec. III, we obtain and describe
number of phases from the model, and point out salient s
metry features. Then in Sec. IV, we show how our mod
provides the lowest harmonics of an intercalated set of c
umns, with counter-rotating helical structures on each c
umn, as experimentally observed in HHTT. Concluding
marks follow in Sec. V.

II. MODEL

The parent phaseDhd , composed of disordered column
on a triangular lattice~hence, featuring a continuous symm
©2003 The American Physical Society07-1
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try axis! has been classified asG05(R^ Z2)`D6h @10#. To
describe theDhd phase in the plane orthogonal to column
we pick for lattice generators

b15aêx , b25
a

2
êx1

A3

2
aêy ,

~1!

B15
2p

a S êx2
1

A3
êyD , B25

4p

A3a
êy .

B1 ,B2 are the two basic vectors in the reciprocal space.
the lowest order in the modulation, one may express
density as

r0~x!5r 01r 1(
i 51

3

cos~Bi•x!, ~2!

whereB352(B11B2). A contour plot ofr0 is shown in Fig.
1. In the Landau’s framework, the modification in dens
taking place at the transition point is written as

r~x!5r0~x!1dr~x!, ~3!

where the density incrementdr is expanded on a basis spa
ning at least one IR ofG0. Following the symmorphic nature
of G0, IR’s are identified by a vectork of high symmetry in
the first Brillouin zone of the parent phase along with an
of the corresponding little group@11#. The IR suitable for
positional order, IR1, is associated with the positioning of
disk-shaped molecules@8#. It is obtained from the vectork0
5A11C1 , with A1 on the edge of the Brillouin zone an
C15(2p/c1)êz along the columnar direction. Specificall
we introduce the second set of reciprocal space vectorsA1
5 2

3 B11
1
3 B21C, A25(B22B1)/3, and A352(A11A2),

making 120 ° between themselves. The associated l
group isC3v , whose characters are provided in Table I. Pic
ing the invariant representationA1, one may write a density
increment as

FIG. 1. Contour plot of theDhd phase, after Eq.~2! ~using r 0

53/2, r 151). Lighter regions are of higher density. Also show
are theDhd andDho primitive cells and the column numbering.
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dr15~g1u11g2u2!1c.c., ~4!

with basis functionsu6(x)5( i 51
3 ei (Ai6C1)•x and complex

order parametersg1 and g2 . Minimization of the free en-
ergy for IR1 has been shown@8# to lead to three distinct
phases, all featuring aA33A3R 30° superlattice and break
ing of the z-translation symmetry. Among them, phase 2
was identified with the intercalated columnar positioning

the molecules in theDho phase. Namely, the pattern (0,1
2 , 1

2 )
was found, where the relative positions of the density inc
ment maxima are indicated in units of the periodc1 along the
z axis, for columns 0, 1, and 2.

In order to treat the orientational aspects, the essen
step is to invoke one or more IR’s ofG0 appropriate to
account for the additional symmetry breaking brought ab
by the counter-rotative helicoidal structure present in theDho
phase@7#. Based on the theee-fold symmetry of the HHT
molecules, along with the Bragg peak structure found exp
mentally @7#, the helicoidal phase is expected to prese
2C3, but break allsAi

, sBi
, sH , 2S6 , i, 2S3, andC2. Here,

sAi
are vertical mirrors cutting throughAi , and similarly for

sBi
. sH is the horizontal plane perpendicular to the colu

nar direction. Other operations follow Shoenflies’s notati
with the rotation axis along a column.

The natural starting point is among the IR‘s based on
similar wave vectork05A11C1 and little groupC3v that
was used in finding IR1. So after selecting a different wa
vectorC25(2p/c2)êz along the columnar direction (z axis!,
we form k15A11C2 and form IR2 based onA1 of the little
group C3v . The star ensemble has four components,k1*5

$6A16C2%, and we use basis functionsSv1 andSv2 along
with their complex conjugates, where

v6~x!5(
i 51

3

ei (Ai6C2)•x ~5!

and

S5R* 32R3, R5 (
n51

3

ei (2pn/3)sinBn•x. ~6!

The functionS, invariant under the small lattice translation
preserves theC3 symmetries along thez axis and the vertical
mirror sAi

, but nevertheless breaks the vertical mirrorssBi
.

It will be seen, however, that the combination IR1 and IR
are by themselves insufficient to reproduce the rotational
grees of freedom of the HHTT molecules.

We then add IR3 built from yet another different wav
vector k25C2 , whose vanishing in-plane component h

TABLE I. Character table ofC3v .

C3v E 2C3 3sv

A1 1 1 1
A2 1 1 -1
E 2 -1 0
7-2
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been shown to obey Lisfshitz condition in two dimensio
@12#. In this case, the star space is two dimensionalk2*
5$6C2% and the~larger! little group C6v has a total of six
possible IR’s. Among them, we pick the one-dimensionalB2,
whose characters are listed in Table II, forming basis fu
tions TeiC2x and its complex conjugate, whereT5R* 3

1R3. Putting together the three IR’s, one has in totaldr
5dr11dr21dr3, with expansions given by Eq.~4!, along
with

dr25S~h1v11h2v2!1c.c.,
~7!

dr35«TeiC2•x1c.c.

for IR2 and IR3, respectively. The complex order parame
g6 , h6 , « are of total dimension ten. We define their pha
angles throughg65ug6ueiw6, h65uh6ueiu6, «5u«ueif;
and also introduce mean and differential phase angles

w65wm6
1

2
wd , u65um6

1

2
ud . ~8!

Up to fourth order, the free energy has the following ord
parameter expansion:

F45a~ ug1u21ug2u2!1
b1

2
~ ug1u41ug2u4!1b2ug1u2ug2u2

1a8~ uh1u21uh2u2!1
b18

2
~ uh1u41uh2u4!

1b28uh1u2uh2u21a9u«u21
b9

2
u«u41m1~ uh1u2ug1u2

1uh2u2ug_2u2!1m2~ uh1u2ug2u21uh2u2ug1u2!

1l1u«u2~ ug1u21ug2u2!1l2u«u2~ uh1u21uh2u2!

1l3~h2h1* «21c.c.!, ~9!

where the individual parts of each IR has been includ
along with the lowest order coupling between one anoth
Note that the last term is the only one involving the pha
angles of the order parameters.
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III. STABLE PHASES

Depending on the signs and magnitudes of the expan
coefficients, the free energy~9! admits a number of stable
phases. In this section, we study many of these phases
ways demanding the presence ofC3 symmetry. We consider
the results for one and two IR’s, keeping the case of th
IR’s for the following section, where references to the e
perimental results for HHTT will be made explicitly. We als
focus on the lowest order stable point in coefficient’s spa
In general, of course, higher order terms in the free ene
could provide additional stable points and consequently
fect the nature of the transition between different phases

A. Single IR solutions

The stable phases with (h15h25«50) involving only
the degrees of freedom of IR1 have already been studied@8#.
Of the three phases found, one has the columnar pat

(0,1
3 , 2

3 ) and two have the pattern (0,1
2 , 1

2 ). In the latter, phase
2A was found to display the intercalated column pattern
curring in theDho phase of HHTT. Turning to the solutions
whereg15g25«50 involving only IR2, it is to be noted
that the free energy for IR2 is identical to that for IR1. A
such, the stable phases are identical, as far as symmetrie
concerned~up to the change ofc1→c2). However, chosen to
describe helical order, our basis functions~5! for IR2 are
quite different than that for IR1, and the actual density co
figurations look fairly different as a result. The first suc
phase,R2-1, has uh1u5A2a8/b18 and h250 ~or vice
versa! and a density incrementdr2 given by

dr252uh1u iS(
i 51

3

sin~Ai1C2!•x, ~10!

with conutour plots as shown in Fig. 2, where the unmod

TABLE II. Character table for representationB2 of point group
C6v .

C6v E C2 2C3 2C6 3sv 3sd

B2 1 -1 1 -1 -1 1
FIG. 2. Plots of phaseR2-1: r01dr2, with dr2 given in Eq.~10!, and usinguh1u50.06.
7-3
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lated column number shifts from 0, to 2, to 1, as one mov
along thez axis in steps ofc2/3. As discussed previously, the
degenerate phaseuh2u5A2a8/b18 andh150 are similar to
the above, but are nevertheless topologically distinct@8#.

A different set of solutions for IR2 has two nonvanishin
and equal amplitudesuh1u5uh2u[h5A2a8/(b181b28)
giving rise to a density increment

dr254h iS cosC2•x(
i 51

3

sin~Ai•x1um!, ~11!

where the mean phase angleum is determined by the sixth-
order termn2(h1

3 h2
3 1c.c.)52n2h6 cos 6um. The sign ofn2

allows for two groups of degenerate configurations,

um5H 0,6
p

3
,6

2p

3
,p, degenerate

6
p

6
,6

p

2
,6

5p

6
degenerate,

~12!

where the first group is favored forn2,0. All degenerate
configurations in Eq.~12! are equivalent, being related
through a column translation or shifted along thez axis by
half a periodc2/2. The contour plots for both casesum50
andum5p/2 are shown in Fig. 3. It is seen that forum50
~Phase R2-2!, dr(x5y50)50. That is, column 0 remains
completely disordered. For each periodc2, columns 1 and 2
are stacks of three-fold molecules, with a 60° phase s
between adjacent molecules in a column and between
umns 1 and 2 at the same vertical level. Phase R2-2 is hig

FIG. 3. Plotsr01dr2, wheredr2 is given in Eq.~11! with h
50.03. ~a! PhaseR2-2 with um50 and ~b! PhaseR2-3 with um

5p/2.
01170
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symmetric and the entire point groupD6h of G0 is preserved.
Only translation symmetries are broken~i.e., continousz
translations and discrete in-plane hexagonal Bravais lat
vector translations!. For um5p/2 ~phaseR2-3), column 0 is
also changed. All three columns are modulated along thz
axis and column 0 is phase shifted by 60° with respect
columns 1 and 2. PhaseR2-3 has fewer symmetries left
with C28(Ai) (C2 rotations aroundAi’s axis!, sAi

, 2S3, and

sh surviving.
A solution exists, for IR3 alone withu«u5A2a9/b9 and

dr352u«uT cosC2•x, ~13!

where the phase anglef of « was ‘‘gauged away’’ by shift-
ing thez axis. Plots of phase R3 from Eq.~13! are shown in
Fig. 4, where it is seen how all the three columns in a sup
lattice cell have three-fold molecules at the same heig
Within a given column, adjacent molecules are phase shi
by 60°. We note that by itself, phaseR3 leaves bothsBi

and

sh unbroken, and it is thus unsuitable to describe heli
structures. Nevertheless, these phases are allowed bas
symmetry considerations for the two-dimensional hexago
structure in the plane. To our knowledge, they have not
been observed.

B. Two IR solutions

A few solutions are possible with«50 ~involving only
IR1 and IR2!. One of them hasg25h250 and

ug1u5Aa8b12am1

m1
22b1b18

,

~14!

uh1u5Aa8m12ab18

m1
22b1b18

.

The associated modulation is

FIG. 4. Plots of phaseR3: r01dr3 with dr3 given in Eq.~13!,
whereu«u50.1.
7-4
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dr52ug1u(
i 51

3

cos@~Ai1C1!•x#12uh1u iS

3(
i 51

3

sin@~Ai1C2!•x1u12~c1 /c2!w1#, ~15!

with a degenerate configuration having insteadg15h150
and ug2u,uh2u given by Eq.~15!, with the change in sub

FIG. 5. Plots ofr01dr21dr3 in Eq. ~17!, with h50.06 and
u«u50.09. ~a! PhaseR23-1 with n521 and um50, ~b! phase
R23-2 with n521 andum5p/2, ~c! phaseR23-3 with n50 and
um50, and~d! phaseR23-4 with n50 andum5p/2.
01170
scripts1↔2 andC2→2C2 . In order to fix the phase angl
u12(c1 /c2)w1 in Eq. ~15!, a term of the formg1

n h1*
m

1••• is necessary in the free energy. From thez translation
invariance, the conditionn/m5c1 /c2 must be obeyed be
tween integersn andm . Also, m must be even owing to the
sign reversal ofh1 under the vertical mirror symmetries
Moreover, in-plane lattice translations byn1b11n1b2 im-
poses the conditionn2m53p, wherep is an integer. Under
these constraints, the possible ratios 3c2/c1 are then the frac-
tions 3(4), 6

5 (7), 3
4 (10), 12

7 (11), etc., where the number in
parenthesis is the~lowest! order of appearance in the expa
sion of the free energy. Physically realized helical ord
should have 3c2.c1 , where the factor 3 in the period rati
originates in the three-fold helix structure@13#. The first case
~with 3c2 /c153) indicates a rotation of 120° between adj
cent molecules in a column~and hence, no rotation at all!.
The second possibility with 3c2 /c156/5 comes with an
angle of p/3 between consecutive molecules represent
only a molecular inversion rather than a rotation. A comp
mentary solution to the free energy minimization is inste
with g25h150 . In that case, the phase angleu1

1(c1 /c2)w2 is fixed by a term in the free energy of th
form g1

n h2
m1•••. The allowed ratios 3c2 /c1 are then6(3),

3
2 (6), 4

7 (9), 12
5 (9), etc. But in both cases with 3c2 /c1.1,

only molecular inversion is again present. Thus, despit
large amount of symmetry breaking taking place in pha
arising from IR1 and IR2, none of them is suitable for t
type of helical order observed in HHTT. We also note ho
by construction, in all such cases, the ratioc1 /c2 can only be
a rational number, contrary to the experimental results
helical order in HHTT.

Considering other solutions to the free energy minimiz
tion, none exist where onlyg1, g2, andh1 are vanishing.
This is somewhat expected, since it would represent a m

ture of two types of columnar modulations@(0,1
3 , 2

3 ) and

(0,1
2 , 1

2 ) vertical displacements#. However, minimization of
Eq. ~9! admits solutions withuh1u5uh2u[h and «Þ0
(IR21IR3) as long as the relation

ud22f5np ~16!

is fulfilled between the order parameter phase angles in
~8!. The integern is fixed by the sign ofl3 in Eq. ~9!. For
l3.0, n is odd and even for the opposite casel3,0. The
increments are

dr254h iS cosS C2•x1
np

2 D(
i 51

3

sin~Ai•x1um!,

~17!
dr352u«uT cosC2•x,

whereum is fixed by Eq.~12!. Consider the case wheren
521 andum50, which gives rise to phaseR23-1 as shown
in Fig. 5. It is seen that in this case, columns 1 and 2 h
opposite helicities. Column 0 is not rotating but instead re
resents a stack of two molecules per period, equidistant
in antiphase. Of the symmetries ofG0, only C28(Bi) (C2
7-5
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rotations aroundBi’s axis! is preserved but the screw sym
metry, nevertheless, exists as obtained by shifting thez axis
by an amountc2/2 and (C6 or C2).

A physically more interesting case is forn521 andum
5p/2, which gives rise to phaseR23-2. In phaseR23-2,
column 0 rotates in the opposite direction with respect
columns 1 and 2. This is in line with the rotational patte
observed experimentally for HHTT. Obviously, no mirr
symmetry exists in that phase. In fact, both the modulat
dr and its gradient“dr are vanishing at the column cente
~i.e., x5n1b11n2b2), despite the orientational order. Th
density~17! thus models a new type of liquid crystal, whic
can be thought as a one-dimensional analog of the nem
order. Indeed, the columns are disordered with respec
positions, yet are ordered with respect to their azimut
angles. It is interesting to note that while IR2 or IR3 alone
insufficient to yield molecular rotations, the sum of the tw
does provide the observed helical structure along the col
en

ke

e

01170
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nar axis. Of course, this is only true because we have pic
n521 in the above.

A different result is obtained whenn50 and um50,
which gives rise to phaseR23-3. In this case, on each co
umn, two molecules are equidistant, and stacked in
tiphase. However, the molecular alignment does not coinc
with the lattice geometry, breaking many more symmetri
Fourthly, in the situation wheren50 and um5p/2, phase
R23-4 is obtained, where once again, each column has
three-fold molecules per period.

IV. INTERCALATED HELICOIDAL ORDER

A case of special interest in the present work is the o
involving all three IR’s introduced in Secs. II and III. Withi
this set, we specialize to the case of equal amplitudes wi
each IR:uh1u5uh2u[h and ug1u5ug2u[g. To the lowest
order, minimization of the free energy~9! provides values for
the amplitudesh, g, andu«u with
g5Aa~2l22b9b8!1a8~b9m22ll1!2a9~lm2l1b8!

b9~bb82m2!12l1~lm2l1b8!12l~l1m2lb!
,

h5Aa~b9m22ll1!1a8~2l1
22b9b!2a9~l1m2lb!

b9~bb82m2!12l1~lm2l1b8!12l~l1m2lb!
, ~18!

u«u5A22a~lm2l1b8!22a8~l1m2lb!2a9~bb82m2!

b9~bb82m2!12l1~lm2l1b8!12l~l1m2lb!
,

p
mn
e

-

at

e

where use was made of the effective expansion coeffici
m[m11m2 , b[b11b2 , b8[b181b28 , and l[l2

1(2)nl3. In such phases, the total density increment ta
the form,

dr154g cosC1•x(
i 51

3

cos~Ai•x1wm!, ~19!

dr254h iS cosS C2•x1D1
np

2 D(
i 51

3

sin~Ai•x1um!,

dr352u«uT cos~C2•x1D!,

where D5f2(c1 /c2)(wd/2). In obtaining Eq.~19!, the
condition~16! was imposed, and thez axis was shifted mov-
ing the phase anglewd into dr2 and dr3. The mean phase
angleswm andum in Eq. ~19! are determined by way of th
following set of sixth-order terms

n1~g1
3 g2

3 1c.c.!52n1g6cos 6wm , ~20!

n2~h1
3 h2

3 1c.c.!52n2h6cos 6um ,
ts

s

n3~g1g2h1
2 h2

2 1c.c.!52n3g2h4cos~4um12wm!,

n4~g1
2 g2

2 h1h21c.c.!52n4g4h2cos~2um14wm!.

For some subset in the range of the coefficientsn1 ,n2 ,n3,
andn4, no competition exists among the terms in Eq.~20!.
In Table III, the values ofwm ,um are given in such cases u
to equivalent configurations related by the choice of colu
~0, 1, or 2! and the choice of rotational direction. When th
signs of then1 ,n2 ,n3, andn4 are not one of the combina
tions listed in Table III,wm andum continue to be multiples
of p/6, at the cost, however, of frustrating minimization of

TABLE III. Cases of no competition in the minimization of th
sixth-order terms in the free energy.

Phase n1 n2 n3 n4 wm um

R123-1 ,0 ,0 ,0 ,0 0 0
R123-2 .0 .0 .0 .0 p/2 p/2
R123-3 .0 ,0 .0 ,0 p/2 0
R123-4 ,0 .0 ,0 .0 0 p/2
7-6
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least one of the terms in Eq.~20!. Of course, in that case, th
existence of a nonvanishingg and h may not be energeti
cally sustainable anymore as determined at fourth order.

Consider the case of phaseR123-4 with wm50 andum
5p/2. Suppose further thatD50. The increment~19! is
then further simplified into

dr154g cosC1•x(
i 51

3

cosAi•x,

dr254h iS sinC2•x(
i 51

3

cosAi•x, ~21!

dr352u«uT cosC2•x,

where n521 was chosen for producing the helical stru
ture. Contour plots ofdr11dr21dr3 in Eq. ~21! are pre-
sented in Fig. 6 for the case wherec2 /c158/3. The counter-
rotating structure found experimentally, model III in Ref.@7#,
is seen to correspond to this phaseR123-4. Namely, the
helicity of columns 1 and 2 are the same and opposite to
of column 0. A helical phase shift of 60° was noted in t
analysis of Ref.@7# between columns 1 and 2 on one ha
and column 0 on the other. However, in view of the nonco
mensurate nature of the ratioc2 /c1, we consider the value o
60° to be rather arbitrary as all phase shift values are es
tially covered as one moves along thez axis for an incom-
mensurate situation. In the present analysis, an incomme
rate value ofc2 /c1 indeed does not allow a term in the fre
energy to fix the value ofD, leaving it arbitrary. The contou
of Fig. 6 also differs from the one in Ref.@7# by the density
obtained between molecules, for example, on column 0z
5c1/2. In the present case, working on the lowest harmon
of the modulations and focusing on the symmetries, fine f
tures such as the molecular tails sticking out of the molec
plane are not reproduced.

Experimentally, theDhd↔Dho phase transition was re
ported to be of weak first order@7#. To study the nature of the
transition, we complement our model ofF4 in Eq. ~9! with
the following set of sixth-order terms, introduced to ensu
stability of the phases, in each of the order parameters:

F85x1~ ug1u61ug2u6!1x2ug1u2ug2u2~ ug1u21ug2u2!

1n1~g1
3 g2

3 1c.c.!1x3~ uh1u61uh2u6!1x4uh1u2

3uh2u2~ uh1u21uh2u2!1n2~h1
3 h2

3 1c.c.!1x5u«u6.

~22!

In phasesR123’s introduced above, where no competition
present between phase angle fixing terms, the terms
coefficientsn3 and n4 in Eq. ~20! do not play an essentia
role. Along with other possible sixth-order coupling term
they are not retained in Eq.~22! for simplicity. Specializing
to the case of equal amplitudes for IR1 and IR2~i.e., uh1u
5uh2u[h andug1u5ug2u[g), and also using Eq.~16!, an
effective free energy is obtained fromF41F8 for the order
parameter’s amplitudes:
01170
at

-

n-

u-

s
a-
r

e

ith

,

Fe f f52ag21bg41s1g612a8h21b8h41s2h6

12a9u«u21
1

2
b9u«u41s3u«u612mh2g2

12l1u«u2g212lu«u2h2. ~23!

The potential described by Eq.~23! generalizes to three di-
mensions, the symmetric model studied in Ref.@15#, involv-
ing the interaction of two order parameters with biquadra
coupling. The sixth-order coefficientss i ’s are assumed to be
all positive. In order to obtain a first-order transition betwe
the parent phase withh5g5u«u50, directly to a phase of
the typeR123, with all nonvanishing amplitudes, the fourt
order coefficientsb,b8,b should be positive. However, the
couplingsm,l,l1 ought to be negative so as to favor simu
taneous occurrence of more than one order parameter. As
temperature is modified, a trajectory is defined in the thr
dimensional space of quadratic couplingsa,a8,a9. Upon
approaching the origin from the positive quadranta,a8,a9
.0 ~bringing down the temperature!, a first-order transition
will take place provided that the following set of condition
are verified:

bb82m2.0,

bb922l1
2.0, ~24!

b8b922l2.0,

along with the global condition

bb8b922bl222b8l1
22b9m214mll1,0. ~25!

FIG. 6. Counter-rotating helical phaseR123-4 r01dr11dr2

1dr3 as specified in Eq.~21!, usingg50.12,h50.04,«50.12.
7-7
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Note how conditions~24! impose limits to the amplitude
of any individual coupling between the order parameters,
serve to rule out transitions to phases with only two nonz
order parameters. The condition~25! ensures that the comb
nation of couplings are sufficiently strong to trigger the tra
sition.

V. CONCLUSION

We have presented a model involving a total of three
reducible representations with explicit base functions rep
senting three-fold molecules. Fixing of angle phases
thermodynamic stability required an expansion of the L
dau coefficients up to the sixth order. We have discusse
number of, hitherto unobserved phases related to the hex
nal array of liquid columns by a group-subgroup relatio
For example, we have shown the possibility of a on
dimensional positional liquid having a helical order for t
molecular edges. Consistent with x-ray diffraction results
theDho phase, we have shown explicitly the emergence o
stable phase with intercalated columns and counter-rota
helical structures on each columns, with arbitrary comm
surability. It was seen that although a minimum of two IR
were in principle required to account for such phase, in pr
ag
of

an

01170
d
o

-

-
-
d
-
a
o-

.
-

r
a
g
-

c-

tice, the total goes up to 3. For the density increments b
on IR2 and IR3 and responsible for the helical order, each
them act as a stationary wave with a progressive wave p
sible only when the two are combined. We have explici
shown the conditions, under which the phaseDho may be
obtained as a first-order transition from the phaseDhd , in
agreement with experimental results. Using those conditio
the phase transition surface in the quadratic coefficient sp
a,a8,a9 may be computed numerically, once the vario
higher order expansion coefficients are specified.

We have also discussed how, for columnar arrangem

with displacements in modulation (0,1
3 , 2

3 ) , involving only
two IR’s, commensurability of the two wave numbers alo
thez axis was necessary, in order to produce the angle-fix
term in the free energy. Many more phases, based on ne
boring IR’s, were not studied in detail. But calling on m
lecular engineering, further study is required to determ
what phase has desirable elastic, optical, and electrical p
erties.
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